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The thermodynamic Ibrmalism expresses chaotic properties of dynamical 
systems in terms of the Ruelle pressure ,#(fl). The inverse-temperature-like 
wn'iable fl allows one to scan the structure of the probability distribution in the 
dynamic phase space. This Ibrmalism is applied here to a Lorentz lattice gas, 
where a particle moving on a htttice of size L d collides with Iixed scatterers 
placed at random locations. Here we give rigorous arguments  that the Ruelle 
pressure in the limit of infinite systems has two branches joining with a slope 
discontinuity at [,r = I. The low- and high-/)' branches correspond to localization 
of trajectories on respectively the "most chaotic" (highest density) region and 
the "'most deterministic" (lowest density) region, i.e., ~#(fl) is completely 
controlled by rare Iluctuations in the distribution of scatterers on the lattice, and 
it does not curry any inlbnnation on the global structure of the static disorder. 
As fl approaches unity from either side, a localization delocalization transition 
leads to a state where trajectories are extended and curry information on trans- 
port properties. At Iinite L the narrow region around f l=  1 where the trajec- 
tories are extended scales as (In L ) - L  where ~ depends on the sign of 1 - f l ,  if 
d> 1, and as (L In L) -I if d =  I. This result appears to be general lbr difl'usive 
systems with static disorder, such as random walks in random environments or 
lbr the continuous Lorentz gas. Other  models of random walks on disordered 
lattices, showing the same phenomenon,  are discussed. 
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1. I N T R O D U C T I O N  

In the past several years a large body of research has focused on the problem 
of relating the macroscopic behavior of nonequilibrium systems to the under- 
lying chaotic dynamics of the particles of which the system is composed. 
Some macroscopic transport coefficients appearing in hydrodynamic-like 
equations have been related to microscopic quantities which characterize the 
chaotic properties of the system. ~-4~ Ruelle, Sinai, and Bowen ~5"6~ intro- 
duced a powerful method to derive most of the interesting chaotic proper- 
ties of a given system from a free-energy-type function, called the Ruelle or 
topological pressure. This thermodynamic formalism is based on a partition 
function calculated in a dynamical phase space. For  systems governed by 
discrete, rather than continuous dynamics, one point in the dynamical 
phase space over t time steps consists of a trajectory 12(t) = {x~, x2 ..... x,} 
which is a set of t successive states of the system. The topological pressure 
~,(fl) is defined as the infinite-time limit of the logarithm of the partition 
function divided by the time t, in a way similar to the definition of the free 
energy per particle in a canonical ensemble, in the thermodynamic limit. 
Again, in analogy with the methods of equilibrium statistical mechanics, 
there is an inverse temperature-like parameter fl which allows one to scan 
the structure of the probability distribution for f2. 

This formalism has been successfully applied to Lorentz gases. '7 io, 
These are models in which independent light particles are moving among 
fixed scatterers. They can be considered as elementary models for diffusive 
transport in fluids and solids. In the continuous case, the effects of disorder 
in the configuration of scatterers can be taken into account and chaotic 
properties can be computed in the region of fl ~ 1, as will be discussed in 
another paper. '~1 The model can be simplified further by constraining the 
light particles to move on a regular lattice, and placing scatterers, with 
some density, at random locations on the sites of this lattice. Such models 
are called Lorentz lattice gases (LLGs). For  some of these we already 
calculated the Ruelle pressure around fl = 1 in the framework of a mean- 
field approximation. '8-t~ For  one-dimensional open systems on a lattice of 
size L we obtained the escape rate 7, the Lyapunov exponent 2, and the 
Kolmogorov-Sinai (KS) entropy, and found good agreement with inde- 
pendent direct numerical estimates of the same quantities. '8~ All these 
quantities depend on the average density of scatterers p. 

We have previously reported ~L'I that, for fl different from unity, and 
for systems with static disorder, the Ruelle pressure has unexpected proper- 
ties as L becomes large enough. In particular, in the thermodynamic limit, 
L--* c~, it becomes independent of the density of scatterers. The cause of 
this is that, for large systems, the Ruelle pressure is completely determined 
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by rare localized fluctuations in the configuration of scatterers. This 
peculiar behavior is expected to be general for all diffusive systems with 
static disorder, in any dimension. In this paper we develop the analytical 
arguments allowing for such a claim. The numerical counterpart will be 
presented in a separate paper. ~3~ 

In the next sections we first describe the LLG  model in more detail, 
and then introduce the thermodynamic formalism. Moreover, we will 
extend the results of ref. 12 to a mixed random walk model, and use it 
throughout the paper to illustrate the generality of our results. The main 
line of our calculation is to construct exact upper and lower bounds for the 
Ruelle pressure, which, as we will show, coincide in the thermodynamic 
limit, and are determined by rare configurations of scatterers, except in a 
small region about fl = 1. We refer to this situation as localization of orbits 
on rare fluctuations of disorder. This means that the dominant contribu- 
tions to the Ruelle pressure in the limit of large systems originate from 
orbits (points in the dynamical phase space) where the particle is restricted 
to move on those rare fluctuations, i.e., for fl < 1, on the largest compact 
cluster of scatterers, and for fl > 1 on the largest hole. We need, as a side 
result, the distribution function of the largest cluster size over all configura- 
tions, and the crude estimate of ref. 12 will be refined. The analysis of finite- 
size effects shows that the thermodynamic limit is approached extremely 
slowly, ~( In  L)-~,  where cc depends on the model and on the sign of 1 - f t .  
For  finite systems, we have estimated the fl range around fl = 1 in which 
the Ruelle pressure is still determined by trajectories extending over the 
whole system. As fl is deviating more and more from unity, the orbits 
become more and more localized on the largest cluster or in the largest 
hole of the entire configuration. In one dimension, there is an intermediate 
state with "weak" localization (see Section 7). 

The extension to continuous Lorentz gases is presented in Section 8. 

2. LORENTZ LATTICE GASES 

A 'light' particle moves ballistically in a finite simple cubic domain 
having periodic or absorbing boundaries and containing V= L a sites of a 
d-dimensionfil cubic lattice. The allowed states of the system x = { r, ci} at 
time t (t = 0, 1, 2,...) are specified by the position r ~ ~ and the velocity c,. of 
the moving particle. The set of possible velocities e i (i = 1, 2 ..... b) connects 
each site to its b nearest neighbors, where the coordination number b 
equals 2d for a simple hypercubic lattice. A fraction p of the sites--chosen 
at random--is  occupied by a scatterer or 'heavy' particle. The quenched 
configuration of scatterers is specified by the set of Boolean variables 
{ p(r), r ~ } ,  where/3(r) = 1 if site r is occupied by a scatterer, and/~(r) = 0  
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if site r is empty. When the light particle hits a scatterer, it is scattered to 
one of the lattice directions with a probability that depends on its incident 
velocity. The scattering laws are further specified by introducing a trans- 
mission coefficient p, a reflection coefficient q, and, for hypercubic lattices, 
a deflection coefficient s, normalized as 

p + q + 2 ( d - 1 ) s = l  (1) 

More formally, W~j with i, j = { 1, 2 ..... b} is the probability that the moving 
particle with incident velocity % is scattered to the outgoing velocity c; with 
normalization Y; Wi~= 1. For instance, on a square lattice, the transition 
matrix has the form 

/ sS qi) Wii = p s 

q s 

(2) 

The scattering at site r is described by the random transition matrix 
I~j(r), which depends on the configuration of scatterers {/5(r); r e N}, and 
is given by 

W,../(r) =/~(r) W•+(1 - ~(r)) 6,j (3) 

At full coverage (p = 1) the moving particle performs a random walk with 
correlated jumps, referred to as the persistent random walk (PRW)J ~4~ 

The time evolution of this system, in a fixed configuration of scatterers, 
is described by the Chapman-Kolmogorov equation for the probability 
zr(x, t), with x = {r, c;}, to find the moving particle at time t on site r with 
incident velocity e i, i.e., 

zr(x, t +  I) = ~  w(x[ y)  g(y, t) (4) 
.1" 

In the case of absorbing boundary conditions, boundary states y = { r', %} 
referring to a particle entering the domain @ are excluded from the y sum- 
mation. The transition matrix w(x [ y) represents the probability to go from 
state 3' = {r', ci} to state x = {r, ci}, and is given by 

w(xl y) = 6 ( r - c i ,  r') ~ i ( r ' )  (5) 

The basic ideas of this paper are applicable to the much wider class of 
diffusive models with static disorder, such as hopping models with bond or 
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site disorder, (tS~ as well as to continuous Lorentz gases (see Section 8). 
As the most immediate generalization of a LLG, we consider another 
model of a random walk, called a mixed random walk (MRW), in which 
a particle moves on a lattice filled by a random mixture of X types of scat- 
terers. This model may be described by X scattering matrices of the form 
of Eq. (2), i.e., W~ ) with parameters p~., qk, sk ( 1 ~< k ~< X). The model con- 
tains the 'ballistic' LLG, described above, as the special case with X =  2, 

~2~_ fiij. The scattering at site r in p ~ = l - q t = p ,  a n d p 2 = l - q 2 = l  or Wgi - 
the MRW model is then described by the random transition matrix 

X 

~,.;(r)= Z /~k(r)W~" (6) 
k = [  

where /3k(r)= 1 if site r is occupied by a scatterer of type k, and zero 
otherwise. 

Boundary conditions may be either periodic (closed system) or absorb- 
ing (open system) on the boundaries of domain ~,  and the transition matrix 
satisfies the normalization relations 

= 1 (closed) 
~ w ( x l y )  ~<1 (open) (7) 
.v 

The inequality sign in (7) for open systems refers to the case where 
y =  {r, ci} denotes a state at a boundary site r with nonentering velocity 
(boundary states with entering velocity do not occur). Indeed, the sum 
over x excludes states where the particle has escaped from the domain @. 
Hence the probability for remaining inside the domain decreases when the 
particle finds itself on a boundary site. 

3. T H E R M O D Y N A M I C  F O R M A L I S M  

As stated in the introduction, the starting point for this paper is a 
partition function defined in the dynamic phase space whose points g2(t) 
represent trajectories of t time steps: 

Zt.(/3, t l x o ) - - ~  [P(Q, tlxo)]/~ (8) 
~2 

where P(s t lxo) is the probability that the system follows a trajectory 
s = {xt,  x2 ..... x,}, starting from x0 at t = 0  in a given system of linear 
dimension L = V t/a. The temperature-like parameter fl allows us to scan the 
structure of the probability distribution P, where large positive and negative 
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fl values select, respectively, the most probable and most improbable trajec- 
toriesJ 6~ The concepts used in this section have been discussed in great 
detail in refs. 3 and 7. 

In each specific system the probability P(D, t]Xo) for a given trajec- 
tory can be expressed in terms of the transition probabilities w(x[ y): 

P(t2, t l xo )=  1!I w(x,,Ix,,_l) (9) 
I t =  I 

The partition function is determined by the properties of the matrix 
w/~(x[y)-[w(xly)]/~, which is defined by raising each matrix element 
w(xl y) to the power ft. For large times the partition function for almost all 
systems becomes independent of the initial point Xo (ergodicity; see ref. 10), 
and is determined by the largest positive eigenvalue AL(fl) of the matrix 
w/~(x] y), which for ergodic systems can be shown to be nondegenerate. 

There is a slight complication because hypercubic lattices are bipartite, 
i.e., the moving particle is always on even sites at even times and on odd 
sites at odd times, or vice versa. The system therefore consists of two inde- 
pendent ergodic components, which should be considered separately, and 
the matrix w/~(x[ y) is called a periodic matrix of period two.  tl6~ To avoid 
these complications one may consider the time t to be an even integer mul- 
tiple of the time step and then consider the matrix w~(xl y ) =  Y'._-wt~(xl z) 
w/j(z[y), defined between even or between odd sites only, to be the 
fundamental matrix. Again, the largest eigenvalue [A/_(fl)] 2 of the matrix 
w~(x[ y), restricted to one sublattice, is nondegenerate. 

In addition, the topological or Ruelle pressure is defined as 

~bz.(fl, p ) =  lim -1 (In ZL(fl, tlXo)),, (10) 
I ~ , Z C  t 

where ( .-- ),, denotes an average over all configurations generated by the 
prescription that for each lattice site, independently, p is the probability 
that it will be occupied by a scatterer. The topological pressure is inde- 
pendent of x0 if the system is ergodic, and can be expressed in terms of the 
largest eigenvalue At_(fl) of the matrix wt~ as 

~b L(fl, p) -- (ln(AL(fl))) ,, (1 1) 

where we have taken the infinite-time limit inside the configurational 
average. 

Several chaotic quantities can be derived from this function, c371 For 
example: the sum of all positive Lyapunov exponents is 2 - Z ~ + 1 2 i =  

- q/~( 1 ); the escape rate for open systems is 7 = - ~ t.( 1 ); the Kolmogorov- 
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Sinai entropy follows from the generalization of Pesin's theorem to hKs = 
~b 1_( 1 ) - ~ ~_( 1 ); the topological entropy h 7- satisfies h r = ~ L( 0); the H ausdorff 
dimension d .  of the repeller (the set of trajectories that never escape) for an 
open system is the zero point of the Ruelle pressure i.e., ~b L(d,) = 0. A prime 
in the above formulas denotes a fl derivative. 

4. U P P E R  A N D  L O W E R  B O U N D S  

In this section the Ruelle pressure will be calculated in the limit of 
infinite system size, by constructing upper and lower bounds at finite L and 
analyzing their limiting behavior for large L. Consider first the Lorentz 
lattice gas. For a closed system it follows from the definition of w/~(xly) 
and Eq. (3) that 

with y = { r, c;} and 

w/s(xl y) =/~(r) W(fl) + (1 --/~(r)) (12) 
A" 

W(fl)=a + b + 2 ( d -  l ) c 
(13) 

a --p/J, b =- q/S; cslS 

For open systems the equality sign in Eq. (12) is replaced by a "less than" 
sign in case y is a boundary state. As a general upper bound, valid for both 
open and closed systems, we obtain 

w/~(xl y) <<. W(fl) (r = scattering site) 
.,- (14) 

Y, w/~(xl y) ~ 1 (r = empty site) 
x 

If fl < 1, tiffs implies that Z.,- wtj(xl Y) <<- W(fl) everywhere, as W(fl) >1 1. 
This inequality combined with Eqs. (8) and (9) yields 

Z L(fl, t l Xo) <~ W(fl) Z L( fl, t - 1 ]Xo) ~ ( W(fl) )' (15) 

Then the pressure, defined by Eq. (10), satisfies the inequality 

ffL(fl, P) ~<ln W(fl) (16) 

822/87/5-6-19 
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If f l>  1, and consequently W(fl)<~ 1, the analog of Eq. (15) becomes 

ZL(fl, t lXo)4 1 (17) 

and 

~%(fl, p ) ~ O  (18) 

Equations (16) and (18) provide upper bounds for the Ruelle pressure for 
all fl values. 

To construct a lower bound to Z/_ we consider clusters of scatterers, 
i.e., regions where every site is occupied by a scatterer, and select the 
cluster of largest size M. A cluster is said to have size M if the largest 
inscribed cube, oriented along the lattice directions, has a linear dimension 
M. If there are several largest clusters of the same size, just choose one 
arbitrarily. The value of M is well defined for any given configuration of 
scatterers. 

As all terms in the sum (8) are nonnegative, any sum over a subset of 
trajectories will give an exact lower bound for Zc.  Let z~W(fl, t Ix0) denote 
the sum over all trajectories which remain confined for t time steps to the 
largest inscribed cube of size M (again, if for a given cluster there is more 
than one inscribed cube of linear size M, choose one arbitrarily); then we 
have a lower bound: 

Z t  >/Z~M w (19) 

In fact, Z~t w is equal to the partition function of a PRW in an open hyper- 
cubic domain with M d sites. According to Eq. ( 11 ) this requires the largest 
eigenvalue Rw A i (fl) of the matrix w/~(xly) for the PRW, which can be 
found in refs. 13 and 17, and reads for sufficiently large M values 

ARW(fl) = W(fl){ 1 - d(fl) k: + (.O(k3)} (20) 

where k 2=y '~=  " 1 k~ and 

A(fl) =(~-~) a + + ( d - 1 )  ) c (21) 

Here k is the smallest wave number accessible to the system, i.e., k = 0 for 
a closed system (with periodic boundaries) and ks "" n / M  (~ = x, y,..., d) for 
an open hypercube (with absorbing boundaries). On the basis of Eqs. (11) 
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and (19) we find the first lower bound on the Ruelle pressure, valid for all 
fl values: 

~hL(fl, p ) ~ ( l n A  Rw " , M (fl)),,----ln W(fl)--A(fl)(dTr-/M-),, (22) 

If we can show that the moment < 1/M'-) tends to zero when the system 
size increases, then this lower bound will tend to the upper bound (16) in 
the range fl < 1. In the range fl > 1, this lower bound will approach the 
finite, negative value In W(fl). 

We need another lower bound which will tend to the upper bound 
(18) for f l>  1. In order to find it, we consider for any fixed configuration 
the longest line segment free of scatterers. Contrary to the largest cluster 
defined above, the largest empty line segment is always a one-dimensional 
domain, whatever the dimensionality of the system is. Let ~r be the number 
of empty sites on this line segment and Z the partition sum (8) restricted 
to trajectories confined to this line segment. In fact, we keep only a single 
trajectory, which travels continually through the empty region and is 
reflected by the two scatterers at the end sites. For sufficiently large times 
the number of reflections is approximately t/ffI. 

The resulting sum is Z - q/~,/ft and we have thus a second lower bound 
for the Ruelle pressure, valid for all fl values, 

~hL( fl, p) >~fl(ln q)( 1/)~),, (23) 

In summary, the following upper and lower bounds apply to all LLG's: 

In W(fl)-zl(fl)(dr~'-/M2)p<<.q~z_(fl, p)<~ln W(fl) ( f l < l )  

fl(ln q)( 1/)~r),, ~< ~O t.(fl, p) ~< 0 (fl > 1) 
(24) 

The above bounds can be extended straightforwardly to the mixed random 
walk (MRW) models, where Eq. (12) becomes 

X 

~w/~(xly)= ~ /0k(r)W'k)(fl) (25) 
x k =  I 

with Wl*)(fl), a , ,  b, ,  and c, defined in a similar way as in Eq. (13). 
The lower bounds Z Rw and Z~t w are respectively determined by the 

largest cube of W+-scatterers containing M a scatterers, where W + is the 
type of scatterer for which In W~*)(fl) is largest for a given ft. The resulting 
upper and lower bounds in MRW models can then be summarized as 

In W+(fl)-A+(fl)(drc2/M2)p<<.tpL(fl, p)<~ln W+(fl) (26) 
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The bounds for fl < 1 contain the LLG as a special case; the bounds for 
fl > 1 are different. 

5. T H E R M O D Y N A M I C  L IM IT  

The goal of this section is to show that the upper bounds of Section 4 
are indeed the asymptotic values for the Ruelle pressure in the limit of 
infinite systems ( L ~  or). To do so, we need to evaluate the inverse 
moments, ( M  -k )  (k = 1, 2), entering in Eq. (24), in the limit as L ~ or. 
This requires the asymptotic behavior of the probability that the largest 
cluster is of size M. 

We first consider the one-dimensional case where configurations are 
generated by distributing scatterers on the lattice sites according to the 
prescription that the occupation probability for each lattice site is p, inde- 
pendently of the other sites. Then the total number of scatterers N may 
fluctuate around its average value pL. A crude estimate can be obtained by 
noticing that the average number of clusters of size m is approximately 
Lp'"( 1 -p)2. Indeed the cluster can be centered on L different positions on 
the lattice (or L - m  positions for an open system), it contains rn scatterers, 
and is bordered by two empty sites. For  m to be a typical value for the size 
of the largest cluster, the above expression must be of order unity, which 
implies that M scales as In L. For  the inverse moments of M this implies 
( M  -k )  ~ (In L) -k for large L. Hence upper and lower bounds in Eqs. (24) 
approach the same limit. 

This argument can be extended directly to higher dimensions. A cluster 
of size m (this means that the largest inscribed cube has side rn) occurs 
roughly Ldp '''1 times, where we used that for large rn the probability of 
finding at least one empty site in each of the boundary hyperplanes is very 
close to unity. For  L sufficiently large Ldp ''''~ is of order unity if m a ~ In L. 
Consequently the inverse moments ( M - k )  ~ (ln L) -kid for L ~ ~ .  

The L dependence of the inverse moments can be obtained more 
rigorously by the following observation. We identify the clusters of size m, 
with m ~ 1, as "noninteracting molecules" of species m with partial densities 
{n(rn) ~-p"'"; m= 1, 2,...}. The probability to find a volume of size V = L  d 

unoccupied by clusters of size > M is then 

P ( M ) = e x p I - V  ~ n(m)J',~exp[--Ldp M'] (27) 
m > M 

Here we replaced the sum in the exponential by the first term, since the size 
of subsequent terms in the series decreases extremely rapidly. We also 
replaced M + 1 by/1,/, which will induce some correction terms of relative 
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order (ln L) -~/a in the final expression (30). The probability that the 
largest cluster is exactly of size M is then A(M) = P(M) - P ( M -  1), or in 
the continuum limit, 

A(M) = P'(M) ~ --dL a In(p) M a- ~pM'~P(M) (28) 

For large L the inverse moments ( M  - k )  = ~ d M M - * A ( M )  can be 
evaluated asymptotically by a saddle-point method, as A(M) is sharply 
peaked around its maximum. The maximum is located at Mo, which is the 
root of 

[ l n A ( M ) ] ' = - d L a ( l n p ) M a - l p M " + d l n ( p ) M a - ~  + ( d - 1 ) M  -~ (29) 

For large M the solution of this equation is determined by the first two 
terms on the right-hand side (dominant balance argument), yielding 

( d  In L~ i1,1 
Mo ~- \ [ln p[ J (30) 

with correction terms of relative order (In L)-,/,i. For large L the inverse 
moments behave asymptotically as 

( M - k )  -k / d ln  L \  -*/a (31) 

in agreement with the crude estimate above. 
In the preceding paragraphs the probability p of occupation of sites by 

scatterers has been kept fixed. It can be shown that the results (30) and 
(31) for the L dependence are still correct if one fixes the total number of 
scatterers N in all configurationsJ ~s~ 

The above results can also be used to estimate the typical size _~r of 
the largest empty line segment. The distributions for scatterers and holes 
are symmetric by exchange of p and 1 - p .  As we are interested in a one- 
dimensional' domain, whatever the dimension d of the lattice, we have to 
replace M a by/~ .  We straightforwardly obtain 

( 1 / . M ) = I / M o =  ln(1 - p )  (32) 
din L 

We conclude therefore that in the thermodynamic limit L--+ o% the 
moments ( M  -k) vanish and thus the lower bounds of Section 4 converge 
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Fig. I. Ruelle pressure for a MRW in a one-dimensional system of infinite size for lh =0.9 
and p., =0.7. It is independent of the density of scatterers as long as p~ or P2 is not 0 or I. 
Note the difference I'rom the LLG, where the branch for fl> I is ~P=0. 

toward the L-independent  upper  bounds.  This yields for the Ruelle pressure 
in L L G s  in the the rmodynamic  limit 

lim ~L(fl, p ) = ~  In W(fl) ( p < l )  (33) 
L--~ ( 0  ( f l > l )  

In the M R W  models, the Ruelle pressure is 

lim OI.(P, P) =In W+(fl) (34) 
L ~  

as is illustrated in Fig. 1 for M R W  models. 

6. LOCALIZATION, EXTENSION TO M R W s  

In the previous section we showed that the dynamic  part i t ion function 
and the Ruelle pressure of  L L G s  in thermodynamical ly  large systems are 
completely determined by the rare fluctuations in the spatial distribution of  
scatterers. It is wor th  stressing again here that for the regions fl < 1, fl = 1, 
and fl > 1, and L ~ or, different sets of  trajectories make  the dominan t  con- 
tributions to the Ruelle pressure. For  fl < 1 the trajectories contr ibut ing to 
the parti t ion function in a given configurat ion of  scatterers are localized on 
the largest compact  cluster of  scatterers, i.e., localized in the "most  chaotic" 
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or "least deterministic" region. For  fl > 1 only a single trajectory con- 
tributes, which--on any d-dimensional lattice--is localized on the longest 
line segment that is free of scatterers, i.e., the relevant trajectory is localized 
in the "least chaotic" or "most deterministic" region of configuration space. 

Therefore, as L ~ ov the Ruelle pressure becomes independent of the 
configuration (except for atypical configurations such as strictly periodic 
ones); it is even independent of the density of scatterers (except at p =0 ,  
where fluctuations no longer exist). It does not carry any information on 
the structure of the random medium. 

Since for fl different from unity, relevant trajectories do not explore the 
whole system but only a small part of it, the "mean-field configuration" 
with all scatterers more or less equidistant from one another is not at all 
a typical configuration. On the contrary, it is the one that gives, among all 
configurations, the minimal value for the Ruelle pressure. On the other 
hand, the maximal Ruelle pressure is obtained for the configuration where 
all of the scatterers form a single compact cluster. The average will be 
somewhere in between. This means that any calculation starting from a 
mean-field approximation will give very poor results for fl values different 
from unity. ~-'31 

However, at fl = 1, the Ruelle pressure for the LLG and its derivatives 
with respect to fl do depend on the overall density ~81 and on more details 
of the total configuration of scatterers, ttS~ For finite L, this is also true in 
a small region around fl = 1. There, relevant trajectories are extended or 
delocalized, and explore large regions of the lattice. This conclusion is 
based on the reasonably good agreement for escape rates and Lyapunov 
exponents between the results from computer simulations and mean-field 
calculations for the LLG. 18~ 

The same conclusions carry over to the MRW models, where in the 
thermodynamic limit the trajectories are localized on the largest compact 
cluster with W+(fl)-scatterers. At f l = l ,  all scatterers have the same 
In W =  0 and again trajectories are delocalized on the whole lattice. The 
structure of the typical mean-field configurations, contributing around fl = 1, 
has not yet been explored, and mean-field estimates for the Lyapunov 
exponents in open systems have not yet been derived for MRWs. 

Interesting new phenomena can occur near those values of fl :~ 1 where 
different types of scatterers may have the same value of In W. For  example, 
this occurs at fl = 0 if all scatterers have the same number of nonzero 
scattering directions. Then the moving particle cannot distinguish between 
the different types of scatterers, and the relevant trajectories become again 
"delocalized" on a large cluster with a random mixture of the different 
scatterers with the same value of In W(fl). More explicitly, if there are X 
types of scatterers, it may occur that K (2 ~< K <  X) of them have the same 
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In W + strictly greater than the In W for all other types of scatterers. Then 
the cluster of W+-scatterers on which the relevant trajectories are localized 
contains a random mixture of these K types of scatterers. ~Sj 

Suppose now that we consider, for d >  I, a L L G  or a MRW model 
that shows a percolation transition. In such a case it is important  to note 
that the definition for the cluster size used here is not the number  of con- 
nected sites, but the size of the largest inscribed hypercube, which typically 
is much smaller than the system size even for a percolating cluster. Thus 
the percolation transitions in such models have no effect on our considera- 
tions and the results of this paper  remain valid. 

7. THE DELOCALIZATION REGION 

In this section we estimate the size of the delocalization region around 
fl = 1 in LLGs for finite systems. The Hausdorff  dimension of the repeller 
(i.e., the set of trajectories which do not escape from the system after an 
infinite time) is a root of the Ruelle pressure, 

tfiL(dw) = 0  (35) 

For a large system, d .  is close to unityJ 7~ Using the facts that 0 L ( 1 ) =  
-~,  ~-DdgZ/L 2 for a hypercubic domain in d dimensions, where D is the 
diffusion coefficient, and 0~.(1) = - Z x , > o  2; ~- - 2~ ,  where 2~_ represents 
the sum of positive Lyapunov exponents in the infinite-L limit, we find that 
the Hausdorff  dimension dH for a large hypercubic domain is, in first 
approximation, 

L2 (36) 

where D and Z~_ depend on the density of scatterers. Therefore, as the 
structure of the repeller is a fundamental feature of  the system, the cross- 
over region should extend at least over a fl range of order l/L'-. On the 
other hand, we have concluded that for L ~ oe and for fl different from 
unity, the Ruelle pressure becomes independent of the global structure of 
the disorder, as the relevant trajectories become localized in regions of the 
lattice where rare fluctuations of high or low density of scatterers occur. 
This was demonstrated in previous sections in the limit of infinite systems. 
Therefore as long as the mean-field value of the Ruelle pressure or of the 
largest eigenvalue is smaller than the lower bound, the states of the system 
are localized. In fact, numerical results ~3~ support  our intuition that the 
effect of localization can be estimated fairly well for any, large but finite 
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system by taking the lower bounds in Eqs. (24) as estimates of the Ruelle 
pressure for fl < 1 or > 1. Hence, for a given L crossover from localized to 
extended states occurs as we approach fl = 1 from either side, when the 
mean-field value equals the lower bound. 

To obtain an estimate of these crossover values, we compare the 
Ruelle pressure of the mean-field configuration with the estimate for the 
Ruelle pressure based on the lower bounds [see Eq. (22)-]. It is equivalent 
to comparing the eigenvalues of the matrix w/j associated with a localized 
and with a delocalized eigenstate. 

The second one is obtained for the "mean-field" configuration in LLGs 
from the PRW expression (20) by a rescaling argumentJ 8" ~3~ It reads 

A~V(f l )=(W(f l ) )"(1--pA(f l )d(n/pL)Z)+(9(1/L 3) (37) 

with W(fl) and zl defined in Eqs. (13) and (21). 
For fl < 1 localization takes certainly place if the lower bound on the 

Ruelle pressure is larger than the mean-field value, i.e., 

In W(fl) - ,d(fl) dn2/Mo > In( W(fl) )" + (9( 1/L 2) (38) 

where the left-hand side is the lower bound given in Eq. (22) with ( M -  2) 
M~ -2 on account of(31 ). The right-hand side is the mean-field value given by 
Eq. (37). By expanding both sides in powers of e = 1 - f l ,  we find that the 
Ruelle pressure is determined by localized trajectories only if 

dn2,d(1) dnZ ,d(1) [ lln p] ] 2/a 
e > e _  - - - 8 ( ~ - ~ M  0 -  8 ( 1 - p )  / d l n L J  (39) 

where ~=[plnp+qlnq+2(d-1)slns[>0. We note that d H = l - - e  in 
Eq. (36) is indeed within the delocalized region, as was to be expected. 

However, the crossover between localized and delocalized states may 
involve some intermediate states. In principle one might have a "weak 
localization" in a region of size M~ (with In L ~ M~ ,~ L), where the local 
density p + Ap is slightly larger than p, but where Ap is large enough so 
that trajectories remaining confined to this region dominate the Ruelle 
pressure. To estimate the largest density fluctuation to be found in a region 
of size M~ we first note that the probability for a density fluctuation Ap in 
such a region can be estimated as exp(p ApM'[), with p the chemical poten- 
tial of the scatterers (considered as lattice gas particles). Since the number 
of different regions of this size is on the order of L a for M~ in the above 
range, the largest density fluctuation occurring in one of these regions 
follows from the requirement L a exp(p ApM'[) ~ 1, or 

-/a ApM'[ ~ In L a (40) 
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In a manner similar to (38) we compare the mean-field value ~ v _ ~  
ln(W(fl)) I' with the mean-field estimate of the Ruelle pressure corresponding 
to trajectories confined in a region of average density p + Ap, 

MF f 1) '4'' r [W(fl) 1-A(fl)(p+Ap)M ~ 

Expressing Ap in terms of M~ according to (40) and expanding the difference 
$MV ,t, MV t-  lowest order in e yields a condition for "weak localization" in M[ - -  hVL ~U 

the most dense region of size M~, namely 

6 d l n L  dA(1) g 2 
s M F  'I'MF~ - ~ > 0  (42) 

M, --v" t. - - ~  M ' [  pM7 

By taking the estimate of the delocalization region in (39) one immediately 
sees that for e ~ (ln L) -2/d, this inequality can only be satisfied in d =  1. 
Localization will occur on a region of size M~ maximizing the difference (42) 
in Ruelle pressures. Differentiating (42) with respect to Mj gives an M~ 
that is proportional to 1/(e In L). As long as this is ~ L ,  weak localization 
will occur. As soon as e ~ e,, ,-  2 Ax2/(p 3L In L) the confinement region of 
the dominant trajectories becomes comparable to the full system and weak 
localization is no longer a meaningful concept. Hence, in one dimension 
one can distinguish in addition the weak localization regime e,,. < e < e  . 
The region of full delocalization is narrowed down to 1 - f l  < e,,.. 

For  fl > 1 and d >  1, the crossover value can be determined by com- 
paring the mean-field estimate with the lower bound (23) for the Ruelle 
pressure in the LLG, combined with Eq. (31), i.e., 

fl In q/Mo > In( W( fl) y' + (9( 1/L 2) (43) 

By expanding in powers of f l -  1 - e '  we find localization for 

, ( [ l n q l ' ~ l _ _ l _ . . . ( l l n q l ' ~  Iln(1 -p) l  (44) 
e ' > e + - - - \  pO J M o - \ d p O  j l n L  

For d = 1 one can show again, by using arguments similar to those above, 
that there is a region of weak localization where the density is slightly 
lower than average. This region occurs for fl values given by C'/(L In L) < 
f l -  1 < e'+, where C' is a positive constant. 

In summary, the Ruelle pressure in LLG models is determined by 
extended or delocalized states if fl is in the interval { 1 - a / ( l n L )  2/d, 
1 + a + / ( l n  L) TM} for d >  1, and in the interval { 1 - C/(L In L), 1 + C'/ 

(L In L)} for d =  1, where a e ,  C, and C' are some positive constants. 
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8. EXTENSION TO CONTINUOUS SYSTEMS 

Our considerations can be extended to the case of continuous Lorentz 
gases with static disorder. For fl < 1, we expect the moving particle to be 
localized in a region of space with a high density of scatterers, while for 
fl > 1 it should be localized in a large region where the density of scatterers 
is zero. To provide some qualitative explanations of this observation, we 
consider a Lorentz gas with hard spherical scatterers, the so-called non- 
overlapping Lorentz gas. Extension to overlapping scatterers or soft scat- 
terers is possible, but will not be considered here. In the nonoverlapping 
Lorentz gas and f l<  1 the Ruelle pressure approaches in the thermo- 
dynamic limit that of a closely packed system of hard spheres of diameter 
a. To understand this it suffices to bound the dynamical partition function 
by the contribution of all trajectories confned to a hypercubic volume of 
size M a containing the centers of o,g"- pM a scatterers. The probability of 
finding such a volume in the system can be estimated conservatively to be 
at least proportional to 

V Q(N-~A/ ,  V - M  a) 
Q( ~d r, M a) (45) 

a<' Q( N, V) 

By expanding the logarithm of the ratio of configurational partition func- 
tions in powers of the volume M '1 of the hypercube (using ~4 r =pMa)--as  
the hypercube is a small subsystem of the total system with (N, V)--and 
noting on the other hand that the partition function Q(X,  M J) of the 
hypercube increases exponentially in M d, we conclude that the probability 
in (45) is proportional to ( V/a a) exp( -o~M a) with ~ some constant. 

For any average density below the close-packing density this can be 
made of order unity by choosing M a proportional to ln(V/aa), which implies 
that for increasing V arbitrarily large volumes with a density arbitrarily 
close to the close-packing density can be found. 

It is not clear what happens to the Ruelle pressure when all of the par- 
ticles can move, as in fluids, for example, although it seems obvious that 
for fl > 1, trajectories where the particles rarely collide will dominate the 
Ruelle pregsure. 

9. CONCLUSION 

We conclude this paper with a number of remarks: 

1. In this paper we have discussed the Ruelle pressure for diffusive 
models with static disorder. Our results indicate that for large systems and 
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for all but a small range of values of the inverse temperature-like parameter 
fl, the Ruelle pressure is determined by rare fluctuations in the configura- 
tion of scatterers, and consequently carries no physical information on the 
chaotic scattering of the moving particle during its motion through the 
frozen-in disorder. Only in a narrow region around fl = 1 does the thermo- 
dynamic formalism yield physically relevant information on the chaotic 
scattering in diffusive systems with static disorder. The extension to con- 
tinuous systems outlined in ref. 12 has been made explicit here without 
having to use the usual tools of kinetic theory. The localization phenomena 
in the Ruelle pressure are in fact most similar to the asymptotic behavior 
(stretched exponential decay) of the survival probability of a random walk 
in a random array of absorbing traps. The survival probability is solely 
determined by the extremely rare fluctuation that the random walk finds 
itself in the largest region free of traps. ~ 191 

In different areas of statistical physics analogous phenomena occur, 
where the large-time or the small-frequency/energy asymptotics are con- 
trolled by extremely rare spatial fluctuations, such as in Lifshitz tails, c2~ 
Griffith's singularities, ~2tl and directed polymers, t22~ 

2. It has been shown numerically in one dimension ~31 that for finite 
systems and outside the crossover region the lower bound found for the 
Ruelle pressure is also a good estimate for the pressure itself, indicating 
that localization on the largest cluster indeed occurs. We conjecture that in 
higher dimensions it is the largest c o n v e x  cluster inscribed in a set of con- 
nected scattering sites that will determine the Ruelle pressure. 

3. To allow the dynamical partition function to scan the full struc- 
ture of our diffusive models with static disorder, time should be sufficiently 
large that the moving particle can explore the entire volume of the system. 
Consequently, t >> L 2, which determines the physically relevant order of 
limits. In determining the Ruelle pressure in Eq. (8) one takes first the limit 
t--* ~ for fixed L, and next allows L to tend to ~ .  Therefore, for a fixed 
system size L, the trajectory has an infinite time to explore the system and 
to find the largest cluster, where it will then stay localized with a high 
probability. An interesting open problem remains to explore both the time 
and size dependence of the dynamical partition function, Eq. (8), to see 
how the various features discussed here are approached in the limit of 
infinite time, but finite size; to study diffusive behavior when the time is 
kept finite and the size of the lattice is allowed to become infinite; and to 
study the behavior of the dynamical partition function when both L and t 
approach infinity in some coupled manner. 



Thermodynamic Formalism and Lorentz Gases 1271 

ACKNOWLEDGMENTS 

This paper was submitted to this birthday issue of Journal of Statisti- 
cal Physics unbeknownst to M. H. E. by his co-authors, C. A., H. v. B., and 
J. R. D., who wish to dedicate their contributions to this paper to Matthieu 
Ernst on the occasion of his 60th birthday, with affection and admiration. 
The authors would like to thank T. Gilbert, U. Ebert, and B. Derrida for 
stimulating discussions. One of us (C.A.) acknowledges support of the 
foundation Fundamenteel Onderzoek der Materie (FOM), which is finan- 
cially supported by the Dutch National Science Foundation (NWO), and 
of the French Centre National de la Recherche Scientifique (CNRS). 
J. R. D. thanks the National Science Foundation for support under Grant 
NSF-PHY-93-21312. 

REFERENCES 

I. P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65:1693 (1990). 
2. J. R. Dorfman and P. Gaspard, Phys. Rev. E 51:28 (1995). 
3. P. Gaspard and J. R. Dorfman, Phys. Rev. E 52:3525 (1995). 
4. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A 42:5990 (1990). 
5. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978). 
6. C. Beck and F. Schl6gl, TIsermodynamics of C&totic Systems (Cambridge University 

Press, Cambridge, 1993). 
7. P. Gaspard and F. Baras, Phys. Rev. E 51:5332 (1995). 
8. M. H. Ernst, J. R. Dorfman, R. Nix, and D. Jacobs, Phys. Rev. Lett. 74:4416 (1995). 
9. J. R. Dorfman, M. H. Ernst, and D. Jacobs, J. Star. Phys. 81:497 (1995). 

10. M. H. Ernst and J. R. Dorfman, In 25 Years o[ Non-Equilibrium Statistical Mechanics, 
J. J. Brey, J. Marro, J. M. Rubi, and M. San Miguel, eds. (Springer-Verlag, Berlin, 1995), 
p. 199. 

11. H. van Beijeren, A. Latz, and J. R. Dorfman, Lyapunov exponents and KS entropies of 
random lorentz gases, unpublished. 

12. C. Appert, H. van Beijeren, M. H. Ernst, and J. R. Dorfman, Phys. Rev. E 54, RI013 
(1996). 

13. C. Appert and M. H. Ernst, Chaos properties and localization in Lorentz [atice gases, 
Physical Review E, submitted. Archived on chao-dyn(a xyz.lanl.gor, #970501 I. 

14. J. W. Haus and K. Kehr, Phys. Rep. 150:263 (t987). 
15. L. Acedo and M. H. Ernst, Lyapunov exponents of random walkers on a bond-disordered 

lattice, Physica A, submitted. 
16. W. Feller~ An hmoduction to Probability Theorl, aml Its Applications, Vol. I, 2nd ed. 

(Wiley, New York, 1957). 
17. M. H. Ernst and J. R. Dorfman, Chaos and diffusion in persistent random walks, 

unpublished. 
18. F. N. David and D. E. Barton, Combinatorial Chance (C. Griffin & Co., London, 1962). 
19. M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 42:243 ( 1989}. 
20. I. M. Lifshitz, Adv. Phys. 13:483 (1964). 
21. R. B. Grilliths, Phys. Rev. Lett. 23:17 (1969). 
22. T. Halpin-Healy and Z. Zhang, Phys. Rep. 254:215 (1995). 
23. C. Appert, C. Bokel, J. R. Dorfman, and M. H. Ernst, Physiea D, (to appear). 


